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Basic concepts of probabili ty theory are briefly reviewed and 
t h e  p-ob'Lzm o f  detemitEtng meaningful measures of perfom;..ixc. 
coinputinf; :,he equi-probability e r ro r  vo'Lume, its orientation, 
the principal semi-axes are presented. 
a b i l i t y  parameter associated with t he  equiprobability e l l ipsoid i s  derived. 

, ' r rce  

A closed form solution f o r  t h e  prob- 

Computes programs f o r  determining ?;he probabili ty of h i t t i ng  typ ica l  -Larger. 
windows are formulated. These Gargec windows are t h r e e  dimensional where the 
dfrnensions may apply bo ei%her %he marginal. dis t r ibu t ion  o f  poplition e r rom 
or  the m a r s n a l  d i s t r ibu t ion  of veloci ty  errors. 

Finally, simplified s t a t i s t i c a l  measures of performance are discussed. 
An equiva'knt spherical  probable e r ror  i s  defined and a conservative approxima- 
t i o n  t o  the generalized variance is derived, 
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On( oi;j?cti.ve i n  t h c  r"ormu'.Laiion of t i e  Guidance E r r o r  Study (Contract 
uX-YL~S'J.) i s -LO tic terniiric ineaningful s t a t i s t i c a l  measures of  vchicle per- 
fomtncv - P c r t ~ m ~ i ~ n c c  c r rors  c o n s i s t  of position and velocity dcviations 
from a ri I.I. t,i*:I%joctory; these errors  are due t o  hardware e r ror  cc:lj i n  
the vehic J.C' F guldxxc system. 

The cen t r a l  program of t h e  guidance e r ror  c 
under c o n t r a  t NAS8-11381) determines the  covariances and mean values of the 
peri'ormance errors. 
termined on the  basis of t h i s  data.  These addi t ional  measures are  more meaning- 
f u l  than Lhe individual performance erri3rs since they d i r ec t ly  describe mission 
success c r i t e r i a .  
m q  be abtaLned from knowled~e of .the eevariane~e af p ~ a i t i ~ n  B~POTB $8 I2-i~: 
c .7 .  x l a r  probable e r ro r  (CPE P . The CPE is  the radius of a c i r c l e  f o r  which 

-e i s  a 50 percent probabili ty tha t  a b a l l i s t i c  missile w i l l  impact wi th in  
,-.s c i rc le .  

Additional measures of vehicle performance may be de- 

A famil iar  exmple of a meaningful s t a t i s t i c d l  measure Lhat 

A s-hple extension of the CPE concept would be a spherical  probable e r ro r  
(SP ), %n which three dimensions are considered. 
mea:;ure; t h a t  may be obtained from the covariance matrix of errors ,  i s  the 
equiprobability e l l ipso id .  
t h e  s r r o r  vector a re  equally probable. The volme, orientation, and pr inciple  
XEP of % h i s  e l l ipso id ,  f o r  respective probabi l i t ies ,  are  of i n t e r e s t  i n  space 
xission studies.  

Another useful error volume 

Th i s  i s  a surface fo r  which a l l  orientations of 



"erfr?nnancF: e r ro r s  of a missal,, spi,r>rfi are generally discussed on L 

i l i s  i,ic basis  and the concept, o f  :I t-:t:~cfoni experiment i s  func1tlrnontLt.L LO 

I : : I t isl, . , ,  ; meaningful measures o f  pcrfornlmw . 
U C ' : * ~  ned tit.1-C as  those quantit ies which d e x r i b e  bhe degree and charnctcr of 
I >A? ,*ando: w s s  . 
.L- ,"c~ L b i l i  v Aeory as it applies t o  t h e  s t a t i s t i c a l  measures of ver-;,icc,fle 
Tomance; f: ir,ore complete Lreatment of the  theory may be found i n  FCefercr,ces i 
through k. 

Stat is t icaL mc;acurcmc:rlLS are 

The fo'llowing discussion i s  intended a6 a brief review cd 
- 

2. I Probaui'Lity DistributTons: 
_I__ 

A randoin experiment i s  one whose outcome can be predicted only on a 
probabi l is t ic  basfa. It  is reca'lled t h a t  if  a random experhent  I s  repeaitecl 
a large number of times, the resu l t s  ( i n  the aggregate) tend t o  exhibi t  con- 
s ~ .  .ent pr, , , e r t i e s  @ 

t h e  outcornt of an experiment. 
Lr1- number of times the experiment i s  repeated i s  cal'led the frequency r a t i o  
of the event A .  With more and more repet i t ions of the experiment, t h i s  frequency 
r a t i o  tends toward a constant value P which is  the probabi l i ty  t h a t  the event 
A w i l l  occur i n  a s ingle  performance of t he  experiment. 

For example, consider a spec i f ic  event A which is  sonne"r,imes 
The r a t i o  of the number of times t h a t  A occurs t o  

A quantity which expresses the r e s u l t  of a random experiment i s  cal ied a 
random variable.  
values f o r  each performance of the experiment. 
i s  then t h e  probabili ty P (X = a )  t h a t  X wi l l  assume a given value a, o r  i f  X 
is  
vabie greater than a but not larger  than b. 
cum7.ilative probability, t h a t  is t h e  probabili ty P(X f b) t h a t  X w i l l  assume a 
value no la rger  than b. 

If X denotes a random variable,  then X w i l l  assume d i f fe ren t  
A fundamental s t a t i s t i c a l  measure 

continuous variable,  the probabi l i ty  P ( a  < X I b) tha t  X w i l l  assume a 
Alternatively one may speak of 

If we know P (X = a )  for a l l  permissable values of a, we have the discrete  
probabili ty d is t r ibu t ion  of the variable X. 
for  a l l  values of a and by we have the continuous probabi l i ty  d is t r ibu t ion  f o r  
the variable X. 
t ion function 

Similarly, i f  we know P ( a 4  X 5 b )  

If we know P (Xs b) for a l l  values of b, we have the dis t r ibu-  

f o r  the variable X. 

I n  dealing with a continuous random variable, the  probabili ty d i s t r i  
function f ( x )  i s  de f i  
a b i l i t y  chat the variable X w i l l  assume a value i n  the  in te rva l  (x, x + dx) 
i s  w r i t  ten 

by considering the in t e rva l  (xy x + d x ) .  The prob- 

(2-2) P ( ~ C ~ X I X + ~ ~ )  = f ( x ? d x  

2 



l i t y  i'( Y 5 b) LS tliet1 computed from the  relationshlj, 

P(a; X5b) .z f(x;Ax ( 2 - 3 )  i" 
'I'h, { isL1.i ~ i ~ i , l < , i ~  :'uric i. 5 <-in (f-t*c:cyuenl,ly ca~L%cci the cumu'.La%ive probabili ty dis"r;i- 
bu L , * a l )  i2 Ll1cn 

F(X) = i rx f:uJ ~ Z L  (2-1; j 
42 

A typical probabiLi by d is t r ibu t ion  function and t h e  corresporL:.tLng cmula- 
t ive  d is t r ibu t ion  are shown in Figure 2-1 . An obvious property of the prob- 
a b i l i t y  d is t r ibu t ion  function i s  tha t  it i s  a non-negative number, i . e .  

f t x i  30 

Obvious properties of the cumulative d is t r ibu t ion  function are 

A physical in te rpre ta t ion  can be given f(x) and F(x) by imagining a u n i t  
mass, dis t r ibuted along a s t r a igh t  l i n e  such tha t  t he  fract ion of mass consen- 
t ra ted t o  the l e f t  of X a x i s  equal t o  F(x) . Then the  derivative 

i s  ?,ne density of the uni t  mass a t  the point x. 
probabili ty density function of the random variable X. 

f ( x )  i s  frequently caxled the 

2.2 Joint  Probabili ty Distributions 

I n  many cases the r e s u l t  of a random experiment i s  not expressed by one 
obse2ved quantity, but by a cer ta in  number of simultaneously observed quant i t ies .  
?or  example, i n  the guidance error  study, the random experiment involves the 
simultaneous occurrence of s i x  random variables  - t he  errors i n  three components 
of position and three components of velocity.  
concepts are generalized and we speak of the probabi l i ty  tha t  the random variables 

I n  t h i s  event, the one-dimensional 

w i l l  simultaneously belong t o  the in te rva ls  (a1  b l ) ,  (a2, b2) 
respect-ively. Expressed mathematically 

x,, x2, * - 
. * .  

(2-6 

where f(x. 
I n  generaf, t$e individual rarxiom variables a re  not independent of one another. 
That is. the probabili ty tha t  Xi will belong t o  the in t e rva l  (ai 
depend upon the values assumed by a l l  the  other random variable; i n  the jo in t  . 

d i s  x i b u  Lion 

x , e . .) xn) i s  the j o i n t  probabi l i ty  dis t r ibut ion function. 

bi) w i l z  

3 
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A j o ~ ni; d i s  t r i ba  I ion function is  defined as  follows : 

Obvious properties of the j o i n t  d i s t r ibu t ion  Tunc t i o n  are  

The probabili ty t h a t  X i s  without regard t o  the values assumed by the 
other random variables i s  called the marginal d i s t r ibu t ion  of Xi and i s  defined 
as 

where u i s  a dumrny var iable  f o r  xi. 
as follows: 

The marginal frequency function i s  defined 

where j ;; i. 

The concept of marginal dis t r ibut ions i s  useful i n  guidance e r ro r  studies 

I n  t h i s  case t h e  respective marginal dis t r ibut ion would 
&ere one might be in te res ted  i n  posit ion e r rors  without regard f o r  the veloci ty  
errors or v ice  versa, 
involve the j o i n t  d i s t r ibu t ion  o f  only three  random variables ra ther  t h m  all 
s i x  variables. 
random variables 
t h i r d  posit ion e r ror  would be excluded by t h e  constraint  imposed by the earth's 
surf ace e 

Studies involving impact dispersions would consider only two 
downrange m i s s  distance and crossrange miss d i s  Lance; the 

5 



7 ci'l two4 irnen:;l onal ~ ~ L - o s a b i l i t y  d i s  t r ibut ion function - L Y  shown i n  
F igure  ..--:? . It :L.S obs, :ved ,,kat CL ve-:.ilcal plane cuts  t h i s  d i s x i b u t i o n  to  
forr;: a ui:: vnriate (c,;nas:,ional) d i s t r ibu t ion .  A conditional distr .nution 
f ( s . ) ,  1. j ,  i s  defilled by the probabili ty t h a t  the variable X, wi'L'!- assume 

a value within the in te rva l  (xj, x + dx. )  on the condition tha t  t h e  variable 
X i  assunt,s a specjfisd value %. ?t shodld a l so  be observed t h a t  the :n'e~3rijec- 
tion of i s  surface with a horizontal, pLane y i e l d s  an e,'Llipee, w i t h  tha size 
cf the e l l i p s e  varying w i t h  the height of the cut ,  
probabi l l  L y  e l l i p ses .  

xi J tJ 

These are cal led equi- 

are independent then t h e  relationship 

i s  val id .  
function follow f o r  independent random variables.  

Similar relationships f o r  t he  dis t r ibut ion,  function and the frequency 

( 2 -11) 

2.3 Mean Values 

The abscissa of the center of gravity of the probabili ty d is t r ibu t ion  f(x) 
consti tutes a weighted mean value. 
Z(X) of t h t  variable X and is  defined as follows: 

This mean value i s  cal led the expected value 

E(7)  = l; f(%) d K  (2-12) 

6 
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butions, v.. I ch involve %he siinuitaneous accurrence of several randcim var 
The mean xaalue of the variable Xi_ i s  

. 
- 0  

€ ( X i )  = * f i i  f (x, ,x, , .--  Z:n> dx, ,  d x , * . -  (2-141 J 
-(03 --a 

Consider a l i nea r  function, a X + b. From Equation (2-13) or (2-14), the 
mean value is 

No$: ; . e tu s  consider the sum, Xl + X2 + . . . + 

a joint  dis t r ibut ion.  
of the random variables i n  

From Equation (2-5_4), the  m e a n  value i s  

It should be noted t h a t  these addition rules  a re  va l id  fo r  mean value 
the random variables a re  independent o r  not, 

( 2 -16) 

, wheth 

2.4 Covariance and C.orrelation Coefficients 

The mean value of a random variable has been defined as a first order  
moment of the  probabi l i ty  d is t r ibu t ion  about the origin.  
provides a measure of the  locat ion of t h e  dis t r ibut ion.  
a dis t r ibut ion may be measured by considering the higher order moments. I n  
par t icular ,  the standard deviation o r  variance and the  covariance provide a 
measure of the dispersion of the random variable aboxt i t s  mean value and the 
Snterdependence of t he  random variables,  respectively,  

Th i s  mean value 
Other properties of 

Cons de r  the second order moment about the origin, 

r 

If the random variables a re  independent, 

8 



wher2 f -  ( =  ) and f -(x.> are marginal dis t r ibut ions.  This multiplicatioE rule 
is  v-:ii a .x:'~y -1; w5en J 2  thL random va-iables :ire independent. 

If the second crder moments are  computed about the mean values, then the 
so-called covariance O-% x i s  obtained, i .e,,  

j 

If  i = j ,  t h i s  cen t ra l  second order moment i s  cal led the variance 6: 
standard deviation crzx- is simply the square root of the  variance. 
relationship i s  es tab lhhed  from Equation (2-19) 

. The 
The following 

Correlation coefficients of t h e  variables Xi and X. are  defined as follows: J 

The correlat ion coeff ic ients  are  bounded between -1 and +l and are  equal t o  1 
f o r  i 1 j .  
variables X i  and Xj .  
the inverse sense when p 
provide a measure of the degree of l i n e a r  dependence between the respective 
variables.. If P a 
as a r e su l t ,  a re  uncorrelated. 

I f  P 2 1, there ex is t s  a complete l i n e a r  dependence between the 
The vaZues orc" X i  and X. w i l l  vary i n  the same sense or  

1 o r  P 5 -1, redpectively. Correlation coeff ic ients  

0, the variables Xi and Xj are  completely independent and, 

2.5 Covariance Natrix of Errors 

The jyidance e r ro r  study i s  concerned pr inc ipa l ly  with the e r ro r s  associated 
5 t h  posi  .on and veloci ty  measurements i n  an orthogonal reference f 
Cartesian coordinates. The random variables a re  then the three err  
i n  the sc.-,lar components of the posit ion measurement and the three errors  E 9 d  93  
i n  %he sca la r  components of the veloci ty  measurement. 
errors i s  then a 6 x 6 array of central ,  second order moments defined by Equa- 
t ion (2-19). 

The covariance matrix of 

This  covariance matrix of errors is  wri t ten 

9 



(2-22) 

0 

- 

* .  by ,;e definit,ion of t h e  covariance, t h i s  is a symmetric ma-tri,x. 

It i s  observed t h a t  t he  diagonal elements of t h i s  covariance matrix are 
L~..3 variances which measure the dispersLon o f  the  errors about t h e i r  mean values, 
while the off-diagonal elements are  the  covariances which measure the i n t e r -  
dependence of the  random variables .  Alternately,  t h i s  covariance matrix may 
be wri t tsn i n  a factored form i n  terms of the standard deviations and correla-  
t,cn coeff ic ients  .) 

where 

0 8 0  

0 0 0  I 

0 0  

0 0  

C r ; O  

o q  
0 0  

10 



and 

$I] = 
L 

Re. ,. rin,, t o  the def in i t ion  of t h e  covariance (2-19) and the correlat ion 
cc . .A~ic i+Li~ ,  ( 2 - 2 l ) ,  t h e  matrix of correlation coeff ic ients  i s  seen to be sym- 
me . c .  

Many guidance error studies  may be concerned with position e r rors  without 
regard f o r  the veloci ty  e r ror  o r  vice versa.  
marginal d i s t r ibu t ion  concept as defined i n  Section 2.2. 
def ini t ion of covariance (2- l9) ,  and the  marginal d i s t r ibu t ion  function (2-9) , 

In t h i s  case, we consider %he 
By employing the 

it may be shown tha t  the covariance matrix of e r rors  for the marginaldis t r ibu-  
t i o n  is obtained by simply par t i t ioning the 6 x 6 covariance matrix, Equa- 
t ion (2-22) .  
fo r  veloci ty  errors ,  the  covariance matrix is  simply the upper l e f t  quadrant 
of Equation (2-22);  for the  marginal d i s t r ibu t ion  of velocity e r rors  without 
regard fo r  the posi t ion errors, the  covariance matrix i s  simply the  'lower ri  
quadrant of Equation (2-22) e 

2.6 1_" Gausian Probabili ty Distributions 

For  the marginal d i s t r ibu t ion  of posi t ion errors  without regard 

The Gaussian probabi l i ty  dis t r ibut ion,  frequently carled the norma's prob- 
ab,i,ity dis t r ibut ion,  i s  encountered qui te  often and would generally apply i n  
the problem a t  hand regarding performance errors  due t o  e r ro r  sources i n  the 
guidance hardware. A major reason f o r  its general appl icabi l i ty  i s  sta;ed by 
the "Central L i m X t  Theorem". This theorem states t h a t  the sum of a large number 

11 



*CI devi, : .; and mean v ' 8  

properti-es o;' Gaussian den;l 

(1) The mode (peak o€ the probabi l i ty  d is t r ibu t ion)  calculated by 
5s located a t  x = m. 

0, dx 

(2) The %nillactian p0$n*Ed9 @~~~~~~~~~ by 
x *  I d - .  

The ri-dinensional Gaussian probabi l i ty  density function, required i n  the  
g.  .uance *mor  study, is wr i t ten  

where : 
A Xn i s  a column vector (x i ,  x2, - . ., x ~ ) ~  of t h e  e r rors  abouc t h e i r  
mean values, 

YnT is the  r o w  vector, 

C,, i s  the  n x n covariance matrix of e r ro r s ,  

ICnn I 
If we consider the complete 6-dimensional d i s t r ibu t ion  of posi t ion and 

veloci ty  errors, 

i s  the determinant of the covariance matrix. 

and C66 is  the  covariance matrix defined by Equation (2-22)- 
cerned only with  t he  marginal desnity function f o r  posi t ion errors without 
regard f o r  the veloci ty  errors, 

If we are con- 

and C 3 1.s simply the upper l e f t  quadrant of Equation (2-22) a The marginal 
densi z y function f o r  the  veloci ty  e r rors  i s  formed i n  a similar manner. 

12 



The - hree-dimcvis nw't equiprobabillty e'llipsoids , i n  partici; 
selvcs to usef?:. o Ia i r~ t r i c  interpseCatzon* I n  t h i s  regard WE, 

the maranal dist r ibut ions e i the r  of t h e  posit ion errors T3 or of the w loc i ty  
errors k j a  Such a surface of equal, probabili ty,  f o r  the  marginal d i s t r ibu t ion  
fi( 5 , '7 5 ) is  shown i n  Figure 2-3 e 

Cartesian coordinates ( k ,T 
errorsI The direct ions of the pr incipal  axes are  not, however, ~ ! - ~ g n e c ~  w i t h  
+ha ( 

1% is  observed tha t  the or ig in  GS the 
5 ) is  coincident wi th  the mean v&I-ae.; of %he 

j 4  ? 9 $ ) ~~~ sgst@m. 

Thf; 'i"oblem of determining the  equiprobability e'llipsoids and t h e i r  
e I iital i s  t reated i.n subsequent sections.  Procedures for obtaining 
c s  .,-- s t . ;  , s t i c a l  measurements, such as the error volume a s s o c i a t d  with 

-,tl" equiprobability e l l i p so id  and the probabi l i ty  of e r ro r s  occurring within 
a even  , ;emetr ical  domain (e.g. ,  a sphere of radius R) are also formuiated. 



Y 

c 3 ~ l  5 = error measurement axis system 

51- principal axes of the equiprobability 
ellipsoid 

Figure 2-3 - A Typical Equiprobability Ellipsoid 



1. The variance terms .-emaining a,re called the eigenvalues of the matrix, 
These variances correspond t o  uncorrelated (independent ) error.; which 
a re  associated w i t h  measurements i n  a new frame of reference. 

2. Corresponding .,a each etgenvalue there is  an assoc.ia%ed e igen~rec lor .  
dach eigenvector element i s  a direct ion cosine and the complste matrix 
G.: eigenvectors specif ies  the or ientat ion of the new Zi:, system wi th  
respect t o  t h s  or iginal  frame of reference. 

3. .  E r r o r  volumes, corresponding t o  specif ic  probabili ty levels ,  are 
obtainable from the covariance matrix. The volume of the equiprob- 
a b i l i t y  e l l ipso id  i s  d i r ec t ly  proportional t o  the determinant of the 
covariance matrix (see page 3k ) . This determinant, the generalized 
variance, i s  a frequently used f igure of merit and is  simply t h e  product 
of t h e  eigenvalues. 

4. The lengths of the semi-axes of -,he equiprobability e l l i p so id  are 
,proportional t o  the eigenvalues; the or ientat ion of the e l l i p so ida l  
e r ror  volume is  given by the eigenvectors ( r e fe r  t o  2 above). 

A brief  theore t ica l  discussion concerning the calculation of eigenvalues 
and eigenvectors and diagonalization of the covariance matrix w i l l  now be 
presented followed by two eigenvector cmputation schemes (algorithms) i n  the 
next section. 

The eigenvalues of the covariance matrix C are the  charac te r i s t ic  o r  
l a t en t  roots of the matrix found from t h e  polynomial equation: 



--L 

whera *.. an :x~%~Lr.ary column vt3c1;or of n elements. 
-.I 

The e-~genveci~ors arc the n : i~: . iut io~ vcc to r s  @. of (3-2) as,., :,tee; a , ,  
1 

the n eigsrva*iues h i. Each eigenvector i s  composed of n elements 

and s a t i s f i e s  t h o  orthonormal ro1a.tionshi.p 

whore si 
L 

Is tlie .:mnl?cker del ta .  Tkus the magnitude of each eige-nvector i s  
,,f afd the scalar or clot product giT @> (i f j) is  zero. This  l a t t e r  result  

~ C~WS that  the d,qenvectors are 'Linearly independent and mutua*Lly orthogonal. 
L;.Y arb i t ra ry  vector in n space can be constructed as a l i nea r  combination of 

the .I eigenvectors. 
fam'liar un i t  vectors i, j9 and k i n  three space. 

I n  t h i s  res lec t ,  t he  eigenvectors are s imilar  t o  the 
- - *  

The desired diagonalization of the covariance matrix C can now proceed. 
We form the eigenvector matrix 

171, . . . .  (3-4) 

w i t h  the eigenvectors as successive coluriins of 6. By virtue of Equation (3-3) ,  
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1 

0 

and it can be seen t h a t  each f l - .  spec i f ies  the component of an oLC coordinate 
along a new coordinate axis. ~&Ls, each element of  the  eigenvector matrix i s  
the direct ion cosine between an old and new axis.  For example 

=, c o 5  (E’, 5 )  ( 3 - 7 )  

ir, -chis way the eigenvectors exactsy specify t h e  or ientat ion o f  the equiprob- 
a b i l i t y  e l l ipso id  associated with (3. 



ab q q  D+r cr=,g q2 c&g 

Gt. q, Gg G?j G 
It -:s obsdrved t h a t  C66 contains a t o t a l  of 36 elements, nine pertaining solely 
t o  position, nine pertaining so le ly  t o  velocity,  and the remaining eighteen 
expressing the correlat ion between these e r ro r  components. 

If we a re  concerned only with the errors  i n  posit ion without regard t o  the 
errors i n  velocity, then it was shown i n  Section 2.5 t h a t  C66 should be pa r t i -  
tioned i n t o  four submatrices and only the  upper 3 x 3 submatrix of posit ion 
emors rgtained. 

r I 

I C33P i C 3 3 p v  

Similarly, i f  only the  velocity e r ro r s  are  considered, the lower r igh t  3 x 3 
submatrix i s  retained. This procedure was j u s t i f i e d  i n  Section 2.5 using 
the idea of a marginal dis t r ibut ion;  thus, the  posit ion and velocity submatrices, 
C33p and C33v, can be calculated from the  marginal d i s t r ibu t ion  functions 

Three dimensional error vohmes a r e  associated w i t h  e i ther  of these sub- 

It is recalLed from Section 3.0 t h a t  the orientation of t h i s  
mztrices * 
i n  SectIrm 2.6. 
el l ipso%dai error vo'J_ume i s  given by the eigenvector matrix 4. 
fqr coir,puting t h i s  eigenvec LGI- matrix €or  the  posit ion and veloci by submatrices 
w:.l'i be presented i n  Section h.1.. 

One par t icu lar  error  volume 5s the equiprobability e l  Lipsoid discussed 

A procedure 

18 



Sinth only three orthogonal &xes can be p i c t o r i a l l y  represented, @ is  
I -.-citio:-l c3 i n  t h e  same way as C& i n  Equation (4-1). 
&e;: of Lm three-dimensional coordinate axes are obtained for the position and 
v( 'oc i ty  e r rors ,  
:,> those obtained from the submstrices of posit ion and veloci ty-  

I n  t h i s  way a sjmultaneous 

It is  impor-bani; 50 noGe t h a t  these coordinate axes are d i f fe ren t  

The axis system appropriate t o  the separate covariance subrnad.ces un- 
cvrrelate the three posit ion errors or I;he three veloci ty  errors but do not 
uncorrelate the posi t ion errors  f rom tine veloci ty  errors .  
the 6 x 6 eigenvector matrix calculates six independent ( complet2e'iy uncorrelated) 
errors i n  posit ion and velocity. Thus, by taking the upper l e f t  quadrant of (g, 
a new posit ion e r ror  axis system is  specified such t h a t  the resu'lcing c,hree 
position e r rors  are a l l  uncorrelated and, furthermore, such tha t  these posit ion 
errors are independent of the veloci ty  errors. Similarly, the lower r igh t  hand 
quadrant, of Equation (4-2) would specify a new veloci ty  error axis system such 
thzt  the --esu'Lting three veloci ty  errors are  a l l  uncorrelated from each other 
2nd fro: .,he posit ion errors .  

On the other hand, 

The usefulness and importance of the 6 x 6 eigenvector matrix can now be 
appreciated. 
t o  c66 w i l l  be presented i n  Section 4.2. 

A hand computational scheme t o  obtain the eigenvectors appropriate 

4*1 Three-Djmensional Submatrices 

I f  the correlat ion between positior, and veloci ty  errors  i s  nor, c.,lisidered 
LO Se s ignif icant ,  the two submatrices contained i n  the 6 x 6 covariance malxix 

ar>d ve'i x i t y  equiprobability GL'Lipsoids i s  obtained such tha t  LPic po:;i;ion crrors 
L- 

b Ich o d o r .  However, the rc;;:cc'?.i ig po on and veloci ty  ~ S Y Q L ' P  are . Gi'is 
c-11 re2 .cd. With t h i s  'las:, res  b,ictio:i i n  mind, the eigenvector ca1cu.i-aiion 
schme w i l l  now be presented. 

r% .. h be diagonalized separately. In th-& way the orientation of both the posi t ion 

unc ,rrelated from each o,,he? and t r i e  ve1ocity errors  are ?.mc;c;re'L., ,c.d from 
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1' 7 

$2 

+is 

(4-3) 

= 0 

m a  che aigenvalues A i 9  __- and. A 3  are considered t o  be known. Using 
Equation (3-2) c,g; ?a Ai@; I 

M 

J 

(4-4) 

where i = 1, 2, 3 .  Then, by solving t h i s  se t  of equations for the  eigenvector 
elements; we obtain 

The norm of each eigenvector is  unity; the constant Ni is  obtained using the 
ident i ty  

fa;: 1- fa;; + fa$ = I (4-6 1 
I n  each case the posi t ive square root i s  taken. 

Fina'Lly, Equations (4-5) are  equally valid (with t h e  appropriate changes 
i n  subscript notation) €or the 3 x 3 submatrix of velocity errors .  
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The calculat ion scheme f o r  6 .- eigenvector K irf 
extensio;; of the fornu-iation ‘in I t i o r  :+.I-. The six e i  L.. x, h 

Ih‘are considered known and t h e  equation, analogous 

= o  (4-7) 

where i 1, 2, 3 ,  . 6.  

The scheme is obtained by solving this se t  of six equations i n  six unknowns. 
The scheme i s  long and tedious and t h e  computations are  performed i n  the f o l -  
lowing s c.eps : 

STEP 1: ij = (o;l”-X;) 

where: i denotes the eigenvector and associated eigenvalue 

i a l ,  2, e 6 

j denotes t h e  term 

j = I->E 

2 1  
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yielding 

STEP ’LO: . 

Now, G i ,  H i ,  Ji, Ki, and Li are known numbers; we solve f o r  Ci as follows 

@I: .dsi”t .+ G5; 4- a,: + a;: + : 

C:(L: + K f  +-Jf + l i t+  G:+ I )  E 

The pos2tive square root i s  taken i n  each case. 
culations per eigenvector the Six eigenvectors can be calculated 

Thus w i t h  a to tah  of 54 cal-  

A s  a final. note, both the three am3 six-dimensional. schemes have been 
m5-fieu using the d i g i t a l  computer (I 

24 



In - ,c: s ta t , i s t ica l  t rea tmi- :  of pcri’ormnnce errors due Lo :;uidancc hzrd- 
. . T : ~ ~ Y :  erro--s, t ,  he Gaussian d i s  t r ibu  t ion of  t h e s e  perf orrnance errors  i s  i funde- 

. ion.  
y c‘1.LFpsir ids can be dofincd Erum tho  a-climensio 
y funct, ior3 uy simply s e t t i n g  the exponential a r  of t h i s  func- 

i , ~ u ;  to . - ~ L s ,  :;c k. ‘ h I s  constant is termed the equiprobzb 
1 -  - fie iLi , , -  .rat: 311 oi’ I L; j*1*OoFat> L’Lity density over the n-ciat 
.;oiuqe crzn de eccompi; u anaEy(,ically, the t o t a l  probabili 
related t o  ;he parameter k. I n  the fol;owi.ng sect ion,  the steps involved i,n 
this integration will be presented and two closed form expressions r e l a t ing  
Pn to  k (val id  f o r  n even or odd) %J%’L~ be derived. I n  addition, Section 5.2 
wil l  show how the lengths of tho n l l ipsa ida l  semi-axes are re la ted to k and 
Sect ion  5.3 w i % L  present two simpid equations f o r  the  volumes of equiprobability 
el’lipsoids of e i ther  even or odd dimensLon. 

It has been pointed out i n  Scction 2.6 thal, a inm-i.iy of 

3 ,  

5.i The wLprotabS‘.Li. t y  Parameter 
7” - 
The ..-d%mensionzL Gaussian probabi l i ty  density function (see Section 2 “ 6 )  

1 ,r The 2 px-formance errors  x l ,  x2, x3, . . . Xn is writ ten 

The task a t  hand is  t o  integrate  -Lhis e q r e s s i o n  over the n-dimensional e l l i p so ida l  
volume. 

quadratic’ form can be made canonicayf: then t h e  integrat ion can proceed. 
usirig the eigenvalues - . , . ,Aa and eigenvectors a,, m a , .  . . . . ., @, 
of :he covar-iance matrix Cnn, an orthogonal transformation of coordinates i s  
per??ormed yielding 

A T  i: -1 ..A Fi r s t ,  we recognize t h a t  xn x, i s  simply a quadratic form. Pf +,his 
By 

- A  A 

A, ,  A,, - 

and 

Now, equating probabili ty elements, 



Bu .2; 2 @ 5 and, by using Equat!-,on (3-4), we obtain 

PI = = I  

Kow, using (5-3) ,  t h e  quadratic form can be written: 

Referring t o  Equation (2-26) the definition of equiprobability e l l i p s o i d s  1s 
simpry 

A T  -) 4 - 7 -  - I - - -  

X ,  C n n I n  2 k =Yw C n n  Y e  (5-9)  
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The:efore, the  f i n a l  canonical form t o  integrate  9s 

Now we seek t o  integrate  t h i s  subject t o  the constraint  

t h i s  constraint  i s  simply an n-dimensional e l l ipso id  with semi-axesJT;T;;,m, 

a ;?ecifi,c covariance matrix ( i t I ,  A z ,  - - * - e ,  A m  ), the coordinates are again 
transformed such t h a t  the n-dimensional e l l ipso id  becomes an n-dimensions1 sphere 
01’ 2adius 1. 

A+ - . + &: z i ; 
K 3 t  

. I  ..,\/T?-;i;;; ( re fer  t o  Section 5.2). I n  order t o  eliminate the dependence on 

Then 

27 



where 

Since L ~ C  rectanguinr  coord ina tes  r' - m e  not independent by -=r:'crtue of 
Equation ( ;-L? } the n-dinicnsiorial spho--fc%;tll coordinates r3 B'L:, 82,. . en-1 
are intrc,, PICBCI = %zso a m  cicfirwd as 

.' Jacfi:-.ian i n  t h i s  case is 

and the appropriate limits are 

( 0  G r f / )  

(0 Qz e,; a, 0n-, 5 Wl 

(0 e 8,-r 4 2w) 

, .Thus, the total probabi l i ty  is  

n > i  

28 



For p?, = 2, 3 ,  and 6, t h i s  formula yields  

J O  J, 

But the ih tegra l  can be c a s t  i n t o  t h e  form o f  the Error Function erf(x) = 

Then 

p, (H)  = e r f  (&)- g e - k/2 

Finally, by mathematical induction, Equation (5-19) wzs reduced t o  two general 
formulae, va l id  fo r  any even o r  odd n greater- than-1.  

h = 3,5,7,- - - 

29 





-* 

r 
L. 

ri 
? Q) 0 



'LO 

i9.875 

20 

25 

30 

50 
50 

60 

70 

73 854 

75 

80 

85 

90 

95 

97 

97 e 071 

98 

99.' 
I- 

[ 

:& 

1.000 

L "004 
' 9  5'. 0 

'i. 419 

I. 867 

2.365 

2 -943 

3 -675 

L 1 i.&, 

4 e 000 

4 . LO9 

4.652 

5.326 

6.250 

7.812 

8 9 967 

9 000 

? e 9x0 

12 870 

32 



TM-5’4/3 Q - lc2 

The general form for an e l l i p se  

where a, b ,  and c are t h e  iengths o f  
form expaws to: 

of 3 dimensions i s  

the pr incipal  axes. I n  n dimensions, t h i s  

Compasing (5-25) and (5-271, we obtain 

a = a ;  b = m ;  c = m ; . - . .  

f o r  the lengths of the pr incipal  axes of the equiprobability e l l ipsoid.  

5.2 E r r o r  Volumes 

The two unique relationships between the total. probabi l i ty  Pn and the 
aq:,;,probability parameter k ( f o r  n even or odd) were derived i n  Section 5.1. 
Jorresponding t o  each equiprobability e l l ipso id  specif ied by k, there  is an 
associated.ell ipsoida1 e r ro r  volume. Two general equations f o r  these e r ro r  
volumes, (applicable f o r  n even or odd), w i l l  now be derived. 

I n  general, t h e  n-dimensional e r ror  volume is: 

where the integration is t o  be carr-ied out over the e l l ipso id  specified by: 
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Here we :.:m used t h e  f a c t  thaL [Cnn} , Ghc Bo-called generalized vmimcpf, is 
simpiy t he  product of' t h e  eigenvalues a 

Next the n-dxncnslonal spherical  coordinates given by (5-2.5) me incorporated. 
We obtaic 

Thiz  obv- 
fomn car. . i3 shown t o  be: 

sly reduces t o  n independent in tegra ls  and, f o r  n even, the geceral 

n If  n i s  odd, 2 is  a f rac t ion  and (-!I! must oe written i n  a more appropr,ate form. 
We incorporate the Gamma function defined as follows 2 

r (m) = ( - - I ) !  

then f' (w+l )= h)! 

n 
2' sett%ng m - it can be shown t ha t  

Also 

6-34] 

'lhius, using (5-33)  anc! (5-34), the e l l i p so ida l  volume f o r  n odd i s  
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-LL ~ h o u l ~ .  oe no-ted that, in all case:: " c h o  ,;iipsoidal vo'lume i s  direcKLy propor- 
t i o n a l  t o  the square root of  the generalized variance, 

FFnal.ly, f ' a ~  ~~~~~~~~~~ mtirtsa@~sla, it, t~ ehom in Saction 7 * 0  that EA 
conservat-:-e eskimate for the e r r o r  volucr is  obtained by simply negleetzng a12 
he cova: --:ice terms in C,. This  estimate 'is conservative since the r e s i i " l t h g  
, :IC -ali:J,t L. variance is  la rger  chan the  actual quantity; hence, fot- a specified 
:obabil- uy.'5 the  associated e r ro r  volume i s  la rger .  

For example, r e fe r r ing  to Section 2.5, the  generalized variance can be 
wr--?;ten i n  3 dimensioris as: 

and, i t  can be shown t h a t  IC331 reaches a maximum when t h e  e r ro r s  are uncorrelated, 

3.5 



I t r  * LI' I t h .  5oundari.es :; ' tiis I *. .,I;?% impact SIXES 

in te.-ms . 3 p u a i h o ~  iid veiocit,y "wirx~ow')' a t  "cut-off". 
miss-iims, i n  g e n x a l ,  
and seloci, y e o : i d i t i o r ~  i s  empll-oyed. 
probabili ty of success is  then one d integrat ing j o i n t  density fune'cions over 
the appropria-be dimensions. The bomdariss f o r  t h i s  integrat ion w i ' L L ,  of 
course, depend upon mission requirements 

,I-:i-s concept of " h i t  Ling" a prescribed " w i m i m "  0.l p o s i t i o n  
The general problem of de-tel-mmning %he 

Tn t8- application a t  hand, the probabi l i ty  density function i s  assumed 
to .w Gaussian, and 5kerefore the problem i s  one of evaluating de f in i t e  in tegra ls .  
NwLrical wocedures ToA-  he evaluation of such in tegra ls  by digit .aI  cornpulers 
are prese, ed i n  t h i s  section. 
been selecked and procedures are formulated f o r  computing the probabi l i ty  of 
"hit t ing" t h e s e  "windows". These "windows" include a sphere , cylinder, and 
rectangular parallelepiped, w i t h  variable dimensions; these dimensions may be 
chosen as e i ther  sca la r  components of posi t ion or s c a l a r  components of velocity.  

Some typica l  three-dimensional "windows" have 

6.1 Integration Scheme 

A five-poinr, Newton-Cotes formula (see Reference 5 )  is  employed f o r  the 
numerical integrat ion of the def in i te  in tegra ls .  
i s  written- 

The basic integrat ion formula 

coordina 
in te rna l  

d q ) ,  82 = g(xz), g3 &3>, and g4 = g(x4). The 
t a s  xo, xis  x2, x3, and x4 are equaLly spaced on the integrat ion 
h. The error term E is  given i n  Reference 9 as follows 

where fvi is  the sixth-order f i n i t e  difference i n  the  values of go, gl, gzr 
& 3 ,  and gL1- 

The select ion of t h i s  five-poZint formula f a c i l i t a t e s  the use of an auto- 
matic covergence check which involves muitiple passes i n  t h e  int,egration * I n  
each successive pass, the integrat ion in t e rva l  h i s  halved. Stnce the coordinates 
of he fi':;a points within the in t e rva l  h are evenly spaced, resul t ing ir. an 



I In - -L?uer t o  study th-is exam pi^^ we may xse the tracking stat:-on Cnr.tesian 

Scalar ~ompsiusent~tj ?if t he  taasgat miss distance are 
coordLn;. 

measurea I long $he u and v %xes sf this coordinate system3 and %he ran601~ 
variab'lt is  ded'ir+od i n  teems of the random vsariablea U and V. 

system described in Reference; 5 The tracking s ta t ioc.  'ioca uiuOfi  

~ ~ a r g ~ t ~  

The l i n t  prmabi ' l i ty density f o r  U and V i s  wri t ten 

where the subscripts 1 and 2 % m i d  r e fe r  t o  the u and v coordinates, respeciively, 
i n  t h e  present example. The exponential argument of Qua t ion  (6-5) i s  m i t t e n  

Transforring t o  polar  coordinates 

and equating probabi l i ty  elements y ie lds  

wkere 1.' i is the Jacobian determinant a ( L i , V )  e Performing the required a (r ,  6 )  
subst i tut ions,  the probabi l i ty  density, i n  terms of polar coordinates is wr i t ten  



To s 
lar  : t c q  S U G ,  a rnax2mmZ .3'1;c+p s i z e  check has been ~ncLuc!ec in th;. inte- 

3_iiar pertinent ,'t:ac~a;"e~ o f  t h e  integrand g ( x )  are n o t  rnissea 

d u m I  An obvious erioice f o r  t h e  maj.rnurn integratior. Ztep F L z c 9  
f o r  the p: 
density fZir:c!-!-m. 
computer us agt.. 

.mt application, might be the standard deviakion 01 ",@ prot~abi2i ty  
A minimum step s i ze  check is a lso  employed Lo &.void x c e s s i v e  

6.2 One-Dimensional Target Windows 

Tht r e  e x i s t s  several  one-dlinensional ta rge t  windows of  i n t e re s t .  $or 
exmple: cGnsider the f l i g h t  path coordinate system and the systerr. of o r b i t a l  
eis,,,-;nt:. %scribed i n  Reference 6. I n  t h e  f l i g h t  path coordinate system, the 

1 .rswen a.ts of t o t a l  velocii.y, f l t g h t  path angle, azimuth, o r  'Locn'L a i t u d e  
w e  quaribitties which may 7-nuependently provide meaningful measures of pLrr'cmance. 
Similarly, i n  the orbital. element system, any one of the orbita5. eiemer,ts could 
be the s o l e  quantity of inkerest .  
is  written 

The one-dimensional, marginal ,JrobabiLity 

x -  m fCt) = f (7) 

where t is  a standardized random variable t h a t  has a zero mean a-ild a &?it 
standard deviation. The random variable x is  t h e  e r ro r  associated witz*-  one 
of the measures i n  e i the r  the f l i g h t  paih coordinate system or the systsm 
of o rb i t a l  elements. The mean m and the variance <=of t h i s  I * *  -iom vz--lable 
can be obtained by the propagaL5o.i procexure given i n  Reference 

x - m  Tab*.ms of t h e  probabili ty Z'(F 5 t )  f o r  a one-dimensional Gaussian 
U L ~ ~ r i b u i l - i o n  are given i n  most textbooks on s t a t i s t i c s  (see Reference 7, 
pages 209-213) -  A s imi la r  table f o r  ti-.f-, following integral :  

t 

J O  
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The probabili ty t h a t  the impact errors  will be within a c i r c l e  of radius R i s  
now written 

(6-8) 

i1.u 



A d i g i t a l  computer program has been implemented for the computatiI;n of 
Equation (6-8). 
Table IT, page 42. 
runs, and the compu-ter time per case was about one minute. 

Typical resu l t s  obtained from t h i s  program are  preserLed i n  
A va’lur,. of i x 10-7 €or the ESTD was used i n  ihese computer 

If me considers only the 50 percent probabili ty definizion of  the Cm, 
3~ resu l t s  presented i n  Reference 8, page 473, may be used t o  mGid t i e  
sx,:jnse of  a d i g i t a l  computer program. A curve of CPE/ (r; verscs 61 / C.. 
is  +.Ten i n  this reference and. a Linear approximation relat ing the CPE :,o cz 
anc r, is established. These results are  valid,  however, only when u mc: v 
are uncorrelated. 
p l i f ied  r e su l t s  of Reference 8 f o r  correlated variables and other probabi l i t ies .  
This extension could be accomplished by using r e s u l t s  obtainable from the d i g i t a l  
computer program. 

No attempt i s  made i s n  the  present study t o  extend t h e  s i m -  
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(2) ";, I l n d c r  

(3  1 a rectangular parallelepiped 

sbabi'Lit,y &:.isit@; i n  SL casts assumed t o  be B ?, - dimensional 
[e.rLd 27, &>. non-3cro mean. This distrib;:.Lcsn may be 

\d-b x r  a m~:>;lnc.l disrzib'latiori of posi t ion wrrors  without rcqard for 
vale; .-by +TO:-: o r  a marginal d i s t r ibu t ron  o f  vs lac i ty  errom wi%haut regard 
f o r  >st 3:: errors. It i s  also assumed tha t  the er rors  are asaocialec; xLth 
meas rem; s i n  a Cartesian reference frame. 

" 1  

The 
sit- ion errors o r  a marginal dis t r ibu t ion  of veloci ty  errors. 

'ollowing derivations are applicable t o  e i the r  a marginal dis  t r ibut ion 
of 
t h e  ,&ation i s  generalized by t h e  use of subscript indices;  the subscripts 
(1, 2, 3 )  w i l l  L-efer t o  &ther  posit ion errors ( k , p ,  Y 
( 3, +) f 1, respectivciy. 

For convenience, 

) o r  veloci ty  errors  

From Equac;on (2-25), the probabili-Ly density is writ ten 

where 23 is a 

Specifically,  

column vector (XIj xzj q j T  of the errors about t h e i r  mean values. 

x z  = E ,  - m.7 

I .  If wli< ye ( € I E 2 , f 1 denote e i t h e r  ( 5 ,  71, C, j or ( , 77 '3 

position errors  a re  being considered, C33 i s  the upper l e f t  qua6 . n t  oi' (2-22); 
al ternately,  i f  velocity errors are  being considered, C33 Ps the i.cwer Tight 
quadrant of (2-22) e 

Y 

( 6-10 1 
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wheri 

and 

k, = 

- I 
k m  - -7 (k, ~ l +  k e  "\z k q ~ 3 )  

6.4.1 The Target Sphere 

The famil iar  c i rcu lar  probable error (CPE) concept has been discussed i n  

Consider a sphere of radius R centered a t  (a i ,  a2, a3) 
Section 6.3. 
probable e r ro r  (SPE). 
in t h e  6 ,  , ( 2  , 6.3 

It is now convenient t o  generalize t h i s  concept t o  a spherical  

coordinate system, as shown i n  Figure (6-1) 

It i s  convenient t o  transform t o  spherical  coordinates, 
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and the  exponential. argument of Equation ( 6 - 9 )  becomes 

K2, . . e a where K l ,  
wi%h m1 - ax, m2 with m 2  - 
errGrs are within a t a rge t  sphere of radius 2 rsa&en, 

K10 are obtained f r o m  Equation (6-10) by replacing m 
?i and m3 wi th  m The probabi l i ty  tha t  t e 

(6-12) 



. 

-- Yl -- Yl 

Figure 6-1 - A Spherical  E r r o r  Window (Target Sphere) 



inputer resul ts  i n d i c a  that a more sophisticated in1.c. * r a t  

<.cp sizL around the p LCS 0; &a distribution ~ n c i  ~ r i ~  

', uLred i,- reduce coxl,pi 0 mr Lime, A scheme k;aicl .:iat . : 

s tep  s i ze  i n  i;he Gails of the  d i s t r ibu t ion  might be considered. 
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Figure 6-2 - A Cylindrical Error Volume (Target Cylinder) 
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m44/ 30 - 1;2 

y 2  z r C o s Y  

Y 3  = Y3 

The exporential argument of Equation ( 6 - 9 )  i.s then wri;,'.. 17 

- - X 3  2 C j ; ' F j  k t r 2 s i o 2 Y +  k 2 r ' ~ ~ ~ 2 J C . + ~ 3 ~ ~  I - T  

'54.3 1 

A computer program based upon the  formulation of Equation (6-15) has been 
implemented. 
page 51. 
these r e s u l t s  

Typical r e s u l t s  of t he  computation are  presented i n  Table I V ,  
A convergence error standard (ESTD) of 1 x -io-7 was used t o  obtain 
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Figure 6-3 - A Rectangular Parallelepiped Error 'Window (Target Box) 



A c.-l,iputer program has been formulated f o r  the evaluation of  Equation (6-16). 
FypLcaZ r e s u l t s  of the  computation are  presented i n  Table V, page 54. 
vergence error  standard (ESTD) of 1 x 10-7 was used t o  obtain these r e su l t s .  

b con- - 
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TM 44/30 - 42 

I n  t . 3  and 6 .he19  ?;he concepts of  CPE (Circular Probable Error)  and SPE - (Spkric , .  . Frob;:> 3 I~C.-O;.> werc: inlroduced. 
rmas~res gi.w :.I:? r a d r i s  of a c i rc le  or sphere such t h a t  the  cumulative prob- 
aki'Lity of h i t 6 i n g  these windows i s  50 percent. 

It w i l l  be recalled t h a t  those 

Instead of basing the equivalence on the cumulative probabili,zy leve l ,  
the equivd.ence could be based on the  e r ror  volume content. 
radius of a c i r c l e  or sphere of ident ica l  volume content could be detei-niilned. 
The gene. equation f o r  the volume of an n-dimensional sphere is given by 
Rer'er*encv I LS: 

I n  thLs wa-r the 

and, from 5.3, the volume of the equiprobability e l l ipso id  is 

Equating the two volumes 

For the probabi l i ty  l e v e l  of interest, k can be read from Figure (sei)* 

The e l l i p so ida l  error vo'Lume is  d i r ec t ly  proportional t o  t h e  square root  
This  quantity i s  termed the  generalized variance of ICnn I , Equation (s-32), 

ana is  simply the product. of t he  eigenvalues 
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i 7-41 

I n  this way, a general notion of :..f,~) sp.rL~nd associated with t h e  n-c?"ier,, -0 

dist r ibut ion could be ob%ained. 

A v ' s ~ ,  useful  approximation ex is t s  for l C m l .  By Equation (2-22a), 

where i s  the determinant of the correlat ion matrix. 

Since e r r o r  vol-u:ies, i n  general, are  proportional t o  the square root of 
the generalized variance, an easy way t o  approximate t h i s  quantity i s  sought. 
By neglect-ing the covarlance terns, I C,j - cr' aa- - - * - * 

can be show?? khat I Cmi 5 C2 6: . . . . the approximate e r ror  volume w i l l  always 
be 'Larger :;.an the actual  voiume. Tn t h i s  way, i f  mission specification; are 
met wi th  t h e  approximation, they w i l l  be ;net t o  an even higher degree by cofi- 
sldering the covariance elements. Hence, the approximation i s  termed conser- 
va-.ive . 

. , ., and, if it 

Thus, we seek t o  prove tha t  

Referring t o  (7-5), t h i s  reduces t o  the requirement t h a t  

(7-7) 

Now the correlat ion matrix p ,  is  an n x n symtmtxic matrix. Any matrix 
ofm t h i s  type can be diagonalized by an orthogonal transformation or" the form 

p, 4 where @ is  the eigenvector matrix formed with the eigenvectors a: 
swcessive columns. 
Thus 

Each eigenvector & i s  associated with an 2;genvalue A i .  



and 

Now w 8  seek the  eLgenvalues such t h a t  I Pnnl is maximum. Equatior, ( 7 - 9 )  
i s  introcuced into (7-2.0) yielding 

and the p a r t i a l  de-lTTatives are  formed 

de ;btain? s-rxe a l l  the  eigenvalues must be posi t ive,  

The condition f o r  a maximum is a’lPnrlI ( 0  . I n  t h i s  case a A i =  

and the condition i s  always sa t i s f i ed .  

Set.:.ing j = 1, Equation (7-13) becomes 

2 3 c , + X * * + , + . . * * + > ( y l - ,  = n  ( 7-15) 

and, subtracting the  equations f o r  j 2, 3 ,  e . e n - 1 from (7-’Ls) 



we obtain 

Hence .Xi = 2, = + - - - = A m - ,  = and, , a n g  (7-9) ,  h, 1. & .$<.,A, t:{ < 7-10) 3 

the maximum jpnn~ i s  unity; t h i s  i s  o~viorrs2.y the case only w h b a  a l l  pij 01.0. 
I n  all o t h e r  cases when pi%j f 0, ip,i c 1. 

At: .2A-.x irolx~t:~: r a t f o  can b6 defixled as 

Thus (7-7) has  been proven. 

1 
Et=pat.i,ai: v -5 )  tiai is eq~ivd.en-r~ ~ a l &  - I 2 wid %B ~~~~ $ha r s - ~ i a  naf WTOP 
volumes I *  lculated wi th  and without th~*'covariance elements included. 
i s  a p l  
a l l  corL* ;ItLon coet'ficients are assumcd equal. 
and it Ls observed tha t  as n increases, t h e  approximation indeed mcomes more 
conservative. 

Figure (7.1) 
31" t h i s  r a t i o  versus the corre.'Lalion coeff ic ient  where, for  simplicity, 

Dimensions from 2 t o  5 are shown 



Z o r r e l a t i o n  Coef ficien’c 

Eigum 7 .I - E r r o r  Il01u.n~ :‘1 &io as a Correlaticn C G ~ .  “i cient 
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T: .-c~rmi t r  Lon of t h a  m:: I .:aatic*-i p:*~~.xh.~t 'cs for tic-Lczmining cc:-ri;pslri 
F :,3t,is i i c a l  measures of performaiice h a  .~ccn presented e The concepts involved 
have becn elucidated so  t h a t  Ghes\-: mea:?ures may be applied w i t h  an accurate 
unders Landing of t h e i r  meaning. 

The emphasis has been placed upon marginal dis t r ibut ions.  For ex 
,:;e three dimensional e r ro r  volumes and -Large% windows are  appl 

where on;. is concerned w i t h  posi t ion emors without regard t o  
may O C C U ~  i n  t h e  valoct ty  measurement, o r  vice versa. 
presenx, r'omm~ia ::ions n,Lght, involtre a consideration of "conditional" e r ror  
volumes 
position e?r.oi volume subject t G  the  constraint  t h a t  the ve loc i ty  error  volume 
be no larger  t h a n  a prescribed value. 

. Luded is o proeedwa for apdcb.ising t h e  error vo"le w%%h reapeat to ~ o ~ $ ~ ~ ~ ~ ~  

An extension of the 

For  t1.x mple, consider the problem where one is  concerned w i t h  t h e  

Another formuration tha t  could be 

the e r ror  sources. 

The procedures formulated f o r  computing the probabi l i ty  of h i t t i n g  a t a rge t  
window can be improved f o r  more e f f i c i e n t  computer usage. 
numerical integrat ion process, tz i lored t o  t h e  problem a t  hand, would enhance 
t h e  accuracy of the  comptations and reduce the computes time. 

A more e f f i c i en t  
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